Introduction to Diophantine Methods Irrationality and Trancendence

نویسنده

  • Michel Waldschmidt
چکیده

1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 10 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 11 1.2.3 Irrationality of e √ 2 (Following a suggestion of D.M. Masser) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.4 The number e is not quadratic . . . . . . . . . . . . . . . 13 1.2.5 The number e √ 3 is irrational . . . . . . . . . . . . . . . . 14 1.2.6 Is-it possible to go further? . . . . . . . . . . . . . . . . . 15 1.2.7 A geometrical proof of the irrationality of e . . . . . . . . 15 1.3 Irrationality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Statement of the first criterion . . . . . . . . . . . . . . . 16 1.3.2 Proof of Dirichlet’s Theorem (i)⇒(iii) in the criterion 1.6 17 1.3.3 Irrationality of at least one number . . . . . . . . . . . . . 18 1.3.4 Hurwitz Theorem . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.5 Irrationality of series studied by Liouville and Fredholm . 26 1.3.6 A further irrationality criterion . . . . . . . . . . . . . . . 28 1.4 Irrationality of e and π . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.1 Irrationality of e for r ∈ Q . . . . . . . . . . . . . . . . . 29 1.4.2 Following Nesterenko . . . . . . . . . . . . . . . . . . . . . 30 1.4.3 Irrationality of π . . . . . . . . . . . . . . . . . . . . . . . 33 1.5 Padé approximation to the exponential function . . . . . . . . . . 34 1.5.1 Siegel’s point of view . . . . . . . . . . . . . . . . . . . . . 34 1.5.2 Hermite’s identity . . . . . . . . . . . . . . . . . . . . . . 40

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

University of Natural Sciences Introduction to Diophantine Methods: Irrationality and Transcendence

1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 10 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 11 1.2.3 Irrationality of e √ 2 (Following a suggestion of D.M. Masser) . . . . . . . ...

متن کامل

Introduction to Diophantine methods irrationality and transcendence

1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.1.1 History of irrationality . . . . . . . . . . . . . . . . . . . . 10 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 12 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 13 1.2.3 Irr...

متن کامل

New irrationality measures for q-logarithms

The three main methods used in diophantine analysis of q-series are combined to obtain new upper bounds for irrationality measures of the values of the q-logarithm function

متن کامل

Irrationality via the Hypergeometric method

In this paper, we describe how the hypergeometric method of Thue and Siegel may be applied to questions of irrationality. As a consequence of our approach, we provide a somewhat simple proof of a classical theorem of Ljunggren to the effect that the Diophantine equation x^ — 2y' = — 1 has only the solutions {x,y) = (1,1) and {x,y) = (239,13) in positive integers. Mathematics Subject Classificat...

متن کامل

Diophantine Properties of Automatic Real Numbers

We study some diophantine properties of automatic real numbers and we present a method to derive irrationality measures for such numbers. As a consequence, we prove that the b-adic expansion of a Liouville number cannot be generated by a finite automaton, a conjecture due to Shallit.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008